首页> 外文OA文献 >Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost ▿ †
【2h】

Cellulose- and Xylan-Degrading Thermophilic Anaerobic Bacteria from Biocompost ▿ †

机译:来自Biocompost的降解纤维素和木聚糖的嗜热厌氧细菌▿†

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.
机译:通过在微晶纤维素上进行初步富集培养,从自加热的生物堆中分离出九种嗜热纤维素分解梭菌菌株和其他四种非纤维素分解细菌菌株。所有纤维素分解分离物均在纤维素上旺盛生长,形成乙醇和乙酸盐或乙酸盐和甲酸盐作为主要发酵产物,以及形成乳酸和甘油作为次要产物。另外,九分之二的纤维素分解菌株能够以与纤维素大致相同的效率利用木聚糖和预处理的木材。木聚糖发酵的主要产物是乙酸盐和甲酸盐,乳酸和乙醇的贡献较小。对16S rRNA和糖基水解酶家族48(GH48)基因序列的系统发育分析表明,利用木聚糖的两个分离株与克拉氏梭菌菌株有关,并且代表了GH48家族中独特的新分支。两种分离物均具有由纤维素或木聚糖独立诱导的高纤维素酶和木聚糖酶活性。生长停止后酶活性下降,纤维素酶活性比木聚糖酶活性更快消失。同时使用木聚糖和纤维素的混合物,观察到显着的协同作用,因为减少了纤维素降解中的滞后相。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号